In this study high-resolution stereo images and Digital Terrain Models (DTMs) from MErcury Surface, Space ENvironment, Geochemistry and Ranging (MESSENGER) mission were utilized to detect impact structures in regions not covered by Mercury’s Laser Altimeter (MLA), while gravitational data was utilized as a supported data set. We have established an inventory of 314 impact structures ≥ 150 km, classified on their morphological and gravitational characteristics. 24 basins ≥ 300 km have been newly discovered. Additionally, we have identified significant surface modifications in impact structures of smooth material infill, which can be either impact-induced or volcanic in origin. The Bouguer anomaly and crustal thinning in the center are displaying an interplay of predominant change of crustal structure in impact basins. Further, this study reveals a common impact history of Mercury and the Moon. Nevertheless, cumulative density distributions suggest the possibility of either a divergence in impactor populations responsible for forming large basins on both celestial bodies or a significant shift in impactor rates. This work holds important implications not only for understanding impact structure formation and evolution processes but also for interpreting the crustal structure. It presents an updated and expanded catalog of impact structures on Mercury, encompassing buried basins, and identifies new areas of interest, potentially serving as target sites for the forthcoming BepiColombo mission.
Loading....